ECE 307 - Techniques for Engineering Decisions

12. Probability Distributions

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

SCOPE OF LECTURE

\square We review basic probability distributions
The entire lecture is simply a review of known probability material given the prerequisites
\square We extensively rely on examples to drive home the usefulness of the material

We rely on the use of tabulated data of probability distributions

OUTLINE OF DISTRIBUTION REVIEWED

\square Discrete distributions

O binomial

O Poisson

\square Continuous distributions

O exponential

O normal

THE BINOMIAL DISTRIBUTION

Binomial distributions are used to describe

 events with only two possible outcomes\square Basic requirements are

O dichotomous outcomes: uncertain events occur
in a sequence with each event having one of
two possible outcomes such as:

THE BINOMIAL DISTRIBUTION

$>$ success/failure $>$ onloff

$>$ correct/incorrect
$>$ truelfalse
O constant probability: each event has the same probability of success

O independence: the outcome of each event is independent of the outcomes of any other
event

BINOMIAL DISTRIBUTION EXAMPLE

We consider a group of n identical machines with

each machine having one of two states:

$$
\begin{aligned}
& P\{\text { machine is on }\}=p \\
& P\{\text { machine is off }\}=q=1-p
\end{aligned}
$$

\square For concreteness, let us set $n=8$ and define for $i=1,2, \ldots, 8$, the r.v.s :

BINOMIAL DISTRIBUTION EXAMPLE

$$
\underset{\sim}{X}=\left\{\begin{array}{lll}
1 & \text { machine } i \text { is on with prob. } & p \\
0 & \text { machine } i \text { is off with prob. } & q=1-p
\end{array}\right.
$$

The probability that 3 or more machines are on is determined by the evaluation of the probability

$$
\boldsymbol{P}\left\{\sum_{i=1}^{8} \underset{\sim}{X} \geq \mathbf{3}\right\}=\boldsymbol{P}\{\mathbf{3} \text { or more machines are on }\}
$$

$$
\begin{aligned}
&= P\{3 \text { machines are on }\}+ \\
& P\{4 \text { machines are on }\}+ \\
& \ldots \\
& P\{8 \text { machines are on }\} \\
& P\left\{\sum_{i=1}^{8}{\underset{\sim}{X}}_{i} \geq 3\right\}=\sum_{r=3}^{8} \frac{8!}{(8-r)!r!} p^{r}(1-p)^{8-r}
\end{aligned}
$$

THE BINOMIAL DISTRIBUTION

In general, for a r.v. $\underset{\sim}{R}$ with dichotomous outcomes of success and failure, the probability
of r successes in n trials is
$P\{\underset{\sim}{\boldsymbol{R}}=\boldsymbol{r}$ in \boldsymbol{n} trials with probability of success $p\}$ the binomial

$$
=\frac{n!}{(n-r)!r!} p^{r}(1-p)^{n-r}
$$

distribution

THE BINOMIAL DISTRIBUTION

We can show that:

$$
\begin{aligned}
\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}}\} & =n \boldsymbol{p} \\
\operatorname{var}\{\underset{\sim}{\boldsymbol{R}}\} & =n \boldsymbol{p}(\mathbf{1 - p}) \\
\boldsymbol{P}\left\{\sum_{i=1}^{n} \underset{\sim}{X} \underset{i}{ } \geq \boldsymbol{k}\right\} & =\sum_{r=k}^{n} \frac{n!}{(n-r)!r!} \boldsymbol{p}^{r}(\mathbf{1}-\mathbf{p})^{n-r}
\end{aligned}
$$

EXAMPLE: SOFT PRETZELS

\square A pretzel entrepreneur can sell each pretzel at $\$ 0.50$ with a market potential of $\mathbf{1 0 0 , 0 0 0}$ pretzels within a year; as there exists a competing product, he cannot be the only seller
\square Basic model is binomial:
new pretzel is a hit \Leftrightarrow captures 30% of (success) market in one year
new pretzel is a flop \Leftrightarrow captures 10% of
(failure)
market in one year

EXAMPLE: SOFT PRETZELS

The probability of these two outcomes is equal
Market tests are conducted with 20 pretzels taste
tested against the competition; the result indicates
that 5 out of 20 testers prefer the new pretzel
\square We evaluate the conditional probability
$P\{$ new pretzel is a hit $\mid 5$ out of 20 people prefer new pretzel $\}$

EXAMPLE: SOFT PRETZELS

\square We define the success riv.

$$
\underset{\sim}{S}=\left\{\begin{array}{ccc}
1 & \text { new pretzel is a hit } & \text { (success) } \\
0 & \text { otherwise } & \text { (failure) }
\end{array}\right.
$$

with

$$
P\{\underset{\sim}{S}=1\}=P\{\underset{\sim}{S}=0\}=0.5
$$

and

$$
\underset{\sim}{X}{ }_{i}= \begin{cases}1 & \text { person i prefers new pretzel } \\ 0 & \text { otherwise }\end{cases}
$$

We evaluate
$P\{$ new pretzel is a hit $\mid 5$ out of 20 people prefer new pretzel $\}$

EXAMPLE: SOFT PRETZELS

$$
\begin{aligned}
& \boldsymbol{P}\left\{\underset{\sim}{\boldsymbol{S}}=\mathbf{1} \mid \sum_{i=1}^{20} \underset{\underset{i}{x}}{\boldsymbol{X}}=\mathbf{5}\right\}=\frac{\boldsymbol{P}\left\{\underset{\sim}{\boldsymbol{S}}=\mathbf{1},{\underset{i}{i=1}}_{20}^{\boldsymbol{X}_{i}}=\mathbf{5}\right\}}{\boldsymbol{P}\left\{\sum_{i=1}^{20}{\underset{\sim}{x}}_{i}=\mathbf{5}\right\}}= \\
& \boldsymbol{P}\left\{\sum_{i=1}^{20} \underset{\sim}{\underset{\sim}{x}}=\mathbf{5} \mid \underset{\sim}{\boldsymbol{S}=\mathbf{1}}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{S}=\mathbf{1}}\} \\
& \boldsymbol{P}\left\{\sum_{i=1}^{20} \boldsymbol{X}_{i}=\mathbf{5} \mid \underset{\sim}{\boldsymbol{S}}=\mathbf{1}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{S}}=\mathbf{1}\}+\boldsymbol{P}\left\{\sum_{i=1}^{20} \boldsymbol{X}_{i}=\mathbf{5} \mid \underset{\sim}{\boldsymbol{S}}=\boldsymbol{0}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{S}}=\boldsymbol{0}\}
\end{aligned}
$$

EXAMPLE: SOFT PRETZELS

$\boldsymbol{P} \underbrace{\left\{\sum_{i=1}^{20} \underset{\sim}{\boldsymbol{X}} \boldsymbol{i}=5 \mid \underset{\sim}{\boldsymbol{S}=1}\right\}}_{0.178 \text { from the }}$ binomial table
$\boldsymbol{P}\{\underbrace{\left\{\sum_{i=1}^{20} \underset{\sim}{\underset{\sim}{X}}=5 \mid \underset{\sim}{\boldsymbol{S}}=0\right.}_{0.032 \text { from the }}\}$ binomial table
is the binomial probability
that 5 out of 20 people prefer the new pretzel with $p=0.3$
is the binomial probability
that 5 out of 20 people prefer
the new pretzel with $\boldsymbol{p}=0.1$

EXAMPLE: SOFT PRETZELS

\square Therefore,

$$
\begin{aligned}
& \boldsymbol{P}\left\{\sum_{i=1}^{20} \underset{\sim}{\boldsymbol{X}}=\mathbf{5} \mid \underset{\sim}{\boldsymbol{S}}=\mathbf{1}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{S}}=\mathbf{1}\} \\
& \boldsymbol{P}\left\{\sum_{i=1}^{20} \underset{\sim}{\underset{\sim}{X}}=\mathbf{5} \mid \underset{\sim}{\boldsymbol{S}}=\mathbf{1}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{S}}=\mathbf{1}\}+\boldsymbol{P}\left\{\sum_{i=1}^{20} \underset{\sim}{\boldsymbol{X}}=\mathbf{5} \mid \underset{\sim}{\boldsymbol{S}}=\mathbf{0}\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{S}}=\mathbf{0}\} \\
& =\frac{(0.178)(0.5)}{(0.178)(0.5)+(0.032)(0.5)} \\
& =0.848
\end{aligned}
$$

THE POISSON DISTRIBUTION

\square The binomial distribution is appropriate for the

 representation of successes in repeated trials\square The Poisson distribution is appropriate for the representation of specific events over time, space, or some other problem-specific dimension, e.g., the number of customers who are served by a butcher in a meat market, or the number of chips judged unacceptable in a production run

REQUIREMENTS FOR A POISSON DISTRIBUTION

\square Events can happen at any of a large number of values within the range of measurement (time,
space, etc.) and possibly along a continuum

At a specific point z, P \{an event at $z\}$ is very small
and therefore events do not happen too frequently

REQUIREMENTS FOR A POISSON DISTRIBUTION

\square Each event is independent of any other event and

$$
P\{\text { event at any point }\}
$$

is constant and independent of all other events

In fact, the average number of events over a unit

THE POISSON DISTRIBUTED r.v.

$\square \underset{\sim}{X}$ is the r.v.representing the number of events
in a unit of measure

$$
\begin{aligned}
& P\{\underset{\sim}{X}=k\}=\frac{\boldsymbol{e}^{-m} \boldsymbol{m}^{k}}{k!} \\
& E\{\underset{\sim}{X}\}=\boldsymbol{m} \quad \operatorname{var}\{\underset{\sim}{X}\}=\boldsymbol{m}
\end{aligned}
$$

m is the Poisson
distribution parameter
\square Interpretation: the Poisson distribution parameter is the mean or the variance of the distribution

EXAMPLE: POISSON DISTRIBUTION

\square Consider an assembly line for manufacturing a
particular product
O 1,024 units are produced
O from past experience, a flawed unit is manufac-
tured every 197 units and so, on average, there
are $\frac{1,024}{197} \approx 5.2$ flawed units in the 1,024
products that are are produced

EXAMPLE: POISSON DISTRIBUTION

\square Note that the Poisson conditions are satisfied
O the sample has 1,024 units
O there are only a few flawed units in the 1,024 sample, i.e., the event of the occurrence of a flawed unit is infrequent

O the probability of a flawed unit is rather small
O each flawed unit is independent of every other flawed unit

EXAMPLE: POISSON DISTRIBUTION

\square Poisson distribution is appropriate represen-
tation with $m=5.2$ and so,

$$
P\{\underset{\sim}{X}=k\}=\frac{e^{-5.2}(5.2)^{k}}{k!}
$$

\square If we want to determine the probability of 4 or more flawed units, we compute

EXAMPLE: POISSON DISTRIBUTION

$$
P\{\underset{\sim}{X}>4\}=1-P \underset{\sim}{\underset{\sim}{X} \leq 4\}}=1-0.406=0.594
$$

The Poisson table states that for $k=12, m=5.2$

$$
P\{\underset{\sim}{X} \leq 12\}=0.997
$$

and therefore

$$
P\{\underset{\sim}{X}>12\}=1-P\{\underset{\sim}{X} \leq 12\}=0.003
$$

EXAMPLE: SOFT PRETZELS

The pretzel enterprise is going well: several retail
outlets and a street vendor are selling the pretzels
\square A vendor in a new location can sell, on average,

20 pretzels per hour; the vendor in an existing
location sells 8 pretzels per hour

EXAMPLE: SOFT PRETZELS

\square A decision is made to try to set up a second street vendor at a different, new location

New location is classified along three distinct categories with the given probabilities

category	characterization	probability
"good"	20 p/h are sold	0.7
"bad"	$10 \mathrm{p} / \mathrm{h}$ are sold	0.2
"dismal"	$6 \mathrm{p} / \mathrm{h}$ are sold	0.1

EXAMPLE: SOFT PRETZELS

\square After the first week, a long enough period to make

a mark, a 30 - minute test is run and 7 pretzels are sold during the 30 - minute test period
\square We analyze the situation by defining the r.v.

$$
\underset{\sim}{L}=\left\{\begin{array}{lcc}
\text { "good" } & 10 & \text { p. sold during test period } \\
\text { "bad" } & 5 & \text { p.sold during test period } \\
\text { "dismal" } & 3 & \text { p.sold during test period }
\end{array}\right.
$$

and assume Poisson distribution applies

EXAMPLE: SOFT PRETZELS

We determine the conditional probabilities of the new location conditioned on the 30-minute test outcomes and evaluate
$P\{\underset{\sim}{\boldsymbol{L}}=$ good $" \mid \underset{\sim}{X}=7\}, P\{\underset{\sim}{\underset{\sim}{L}}="$ bad $" \mid \underset{\sim}{X}=7\}$ and
$\boldsymbol{P}\{\underset{\sim}{\boldsymbol{L}}=\mathbf{\prime}$ dismal $" \mid \underset{\sim}{X}=7\}$
\square We compute the values of the Poisson distributed

$$
P\left\{\underset{\sim}{X}=7 \mid \underset{\sim}{L}=" \text { good }^{\prime} "\right\}=\frac{e^{-10}(10)^{7}}{7!}=0.09
$$

EXAMPLE: SOFT PRETZELS

$$
\begin{aligned}
& P\{\underset{\sim}{X}=7 \mid \underset{\sim}{L}=" \text { bad } "\}=\frac{e^{-5}(5)^{7}}{7!}=0.104 \\
& P\left\{\underset{\sim}{X}=7 \left\lvert\, \underset{\sim}{\underset{L}{L}=" \text { dismal } "\}=\frac{e^{-3}(\mathbf{3})^{7}}{7!}=0.022}\right.\right.
\end{aligned}
$$

- Then $P\{\underset{\sim}{L}=$ " $\operatorname{good}\|\| \underset{\sim}{X}=7\}=$

$$
\boldsymbol{P}\{\underset{\sim}{X}=7 \mid \underset{\sim}{L}=" \text { good } "\} \cdot \boldsymbol{P}\{\underset{\sim}{\operatorname{L}}=\text { " good } "\}
$$

$$
\boldsymbol{P}\{\underset{\sim}{X}=7 \mid \underset{\sim}{L}=" \text { good } "\} \cdot P\{\underset{\sim}{\operatorname{L}}=\text { " good } "\}+\boldsymbol{P}\{\underset{\sim}{X}=7 \mid \underset{\sim}{L}=" \text { bad } "\}
$$

- $\boldsymbol{P}\{\underset{\sim}{\boldsymbol{L}}=$ "bad " $\}+\boldsymbol{P}\{\underset{\sim}{X}=7 \mid \underset{\sim}{\boldsymbol{L}}=$ "dismal " $\} \bullet \boldsymbol{P}\left\{\underset{\sim}{\boldsymbol{L}}={ }^{\boldsymbol{L}}\right.$ dismal " $\}$

EXAMPLE: SOFT PRETZELS

$$
\begin{aligned}
P_{\{ }\{\underset{\sim}{L}=" \text { good } " \mid & \underset{\sim}{X}=7\}
\end{aligned}=\frac{(0.09)(0.7)}{(0.09)(0.7)+(0.104)(0.2)+(0.022)(0.1)}
$$

\square Similarly,

$$
\begin{aligned}
& P\{\underset{\sim}{L}=\text { "bad } " \quad \mid \underset{\sim}{X}=7\}=0.242 \\
& P\{\underset{\sim}{\mathcal{L}}=\text { " dismal } " \mid \underset{\sim}{X}=7\}=1-(0.733+0.242)=0.025
\end{aligned}
$$

EXPONENTIALLY DISTRIBUTED r.v.

\square Unlike the discrete Poisson or the binomial

 distributed r.v.s, the exponentially distributed r.v. is continuous\square The density function has the form

EXPONENTIALLY DISTRIBUTED r.v.

\square The exponentially distributed r.v. is related to the Poisson distribution
\square Consider the Poisson distributed r.v. $\underset{\sim}{\boldsymbol{X}}$ with $\underset{\sim}{\boldsymbol{X}}$ representing the number of events in a given quantity of measure, e.g., period of time
\square We define $\underset{\sim}{\boldsymbol{T}}$ to be the r.v. for the uncertain quantity we measure, e.g., the time between 2 sequential events or the distance between 2 accidents

EXPONENTIALLY DISTRIBUTED r.v.

\square Then, $\underset{\sim}{T}$ has the exponential distribution with

$$
\begin{gathered}
\boldsymbol{F}_{\underline{T}}(t)=\boldsymbol{P}\{\underset{\sim}{T} \leq \boldsymbol{t}\}=\mathbf{1}-\boldsymbol{e}^{-m t}, \\
E\{\underset{\sim}{T}\}=\frac{1}{m} \quad \text { and } \quad \operatorname{var}\{\underset{\sim}{T}\}=\frac{\mathbf{1}}{\boldsymbol{m}^{2}}
\end{gathered}
$$

The exponentially distributed r.v. is completely

specified by the parameter m

EXAMPLE: SOFT PRETZELS

\square We know that it takes 3.5 minutes to bake a
pretzel and we wish to determine the probability
that the next customer will arrive after the pretzel
baking is completed, i.e., $\boldsymbol{P}\{\underset{\sim}{\boldsymbol{T}}>3.5$ minutes $\}$
\square We also are given that the location types are
classified as being

EXAMPLE: SOFT PRETZELS

"good" location $\Leftrightarrow m=20$ pretzels / hour
"bad" location $\Leftrightarrow m=10$ pretzels / hour
"dismal" location $\Leftrightarrow m=6$ pretzels / hour

We compute the probability by conditioning on
the location type and obtain

EXAMPLE: SOFT PRETZELS

$$
\begin{aligned}
P\{\underset{\sim}{T}>3.5 \text { minutes }\} & = \\
& P\{\underset{\sim}{T}>3.5 \text { minutes } \mid m=20\} \cdot P\{m=20\}+ \\
& P\{\underset{\sim}{T}>3.5 \text { minutes } \mid m=10\} \cdot P\{m=10\}+ \\
\equiv 0.0583 \text { hour } & P\{\underset{\sim}{T}>3.5 \text { minutes } \mid m=6\} \cdot P\{m=6\}
\end{aligned}
$$

\square We evaluate

$$
P\{\underset{\sim}{T}>3.5 m\}=
$$

EXAMPLE: SOFT PRETZELS

EXAMPLE: SOFT PRETZELS

and so

$$
P\{\underset{\sim}{T}>3.5 \text { minutes }\}=0.3809
$$

\square Therefore,

$$
P\{\underset{\sim}{T} \leq 3.5 \text { minutes }\}=1-0.3809=0.6191
$$

and the interpretation is that the majority of the
customers arrives before the pretzels are baked

THE NORMAL DISTRIBUTION

The normal or Gaussian distribution is, by far, the most important probability distribution since the Law of Large Numbers implies that the distribution of many uncertain variables is governed by the normal distribution, or commonly known as the bell curve

We consider a normally distributed r.v. $\underset{\sim}{Y}$

$$
\underset{\sim}{\boldsymbol{Y}} \sim \mathscr{N}(\mu, \sigma)
$$

THE NORMAL DISTRIBUTION

\square The density function is

$$
f_{\underline{Y}}(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(\frac{1}{2} \frac{(y-\mu)^{2}}{\sigma^{2}}\right)} \text { variance }
$$

with $E\{\underset{\sim}{\boldsymbol{Y}}\}=\mu \quad$ and $\quad \operatorname{var}\{\underset{\sim}{\underset{Y}{Y}}\}=\sigma^{2}$

THE STANDARD NORMAL DISTRIBUTION

\square Consider the r.v. $\underset{\sim}{Z}$ which has the standard normal distribution

$$
\underset{\sim}{Z} \sim \mathscr{N}(0,1)
$$

The relationship between the r.v.s $\underset{\sim}{Y}$ and $\underset{\sim}{Z}$ is given by the affine relation:

$$
\underset{\sim}{Z}=\frac{\underset{\sim}{Y}-\mu}{\sigma}
$$

with

$$
\boldsymbol{P}\{\underset{\sim}{\boldsymbol{Y}} \leq \boldsymbol{a}\}=\boldsymbol{P}\{\underset{\sim}{\boldsymbol{Z}} \leq(\boldsymbol{a}-\mu) / \boldsymbol{\sigma}\}
$$

THE STANDARD NORMAL DISTRIBUTION

\square Note that

$$
E\{\underset{\sim}{Z}\}=0 \text { and } \operatorname{var}\{\underset{\sim}{\underset{\sim}{Z}}\}=1
$$

\square In general, any value of the normal distribution is
obtained from the standard normal distribution with
the affine transformation

$$
\underset{\sim}{Z}=\frac{\underset{Y}{Y}-\mu}{\sigma}
$$

EXAMPLE: QUALITY CONTROL

\square We consider a disk drive manufacturing process in which a particular machine produces a part used in the final assembly; the part must rigorously meet the width requirements within the interval [3.995, 4.005] mm ; else, the company incurs $\$ 10.40$ in repair costs
\square The machine is set to produce parts with the width of 4 mm , but in reality, the width is a normally distributed r.v. $\underset{\sim}{W}$ with

EXAMPLE: QUALITY CONTROL

$$
\underset{\sim}{W} \sim \mathscr{N}(4, \sigma)
$$

and

$$
\sigma=f(\text { speed of machine })= \begin{cases}0.0019 & \text { slow speed } \\ 0.0026 & \text { high speed }\end{cases}
$$

The respective costs in \$ of the disk drive are

20.75 slow speed
$20.45 \quad$ high speed

EXAMPLE: QUALITY CONTROL

We may interpret the cost data to imply that more
disks can be produced at lesser costs at the high
speed
The problem is to select the machine speed to
obtain the more cost effective result
\square A decision tree is useful in the analysis of the situation

EXAMPLE: QUALITY CONTROL

\square We evaluate the probability of each outcome

LOW - SPEED PROBABILITY EVALUATION

$$
\begin{gathered}
P\{\text { defective disk is produced }\} \\
P\{\underset{\sim}{W}<3.995 \text { or } \underset{\sim}{W}>4.005\} \\
1-P\{3.995 \leq \underset{\sim}{W} \leq 4.005\} \\
\underset{\sim}{Z}=\frac{W-4}{0.0019} \\
1-P\left\{\frac{3.995-4}{0.0019} \leq \underset{\sim}{Z} \leq \frac{4.005-4}{0.0019}\right\}=
\end{gathered}
$$

LOW - SPEED PROBABILITY EVALUATION

HIGH - SPEED PROBABILITY EVALUATION

$$
\begin{aligned}
& P\{\text { defective disk is produced }\} \quad= \\
& P\{\underset{\sim}{W}<3.995 \text { or } \underset{\sim}{W}>4.005\} \\
& 1-\boldsymbol{P}\{3.995 \leq W \leq 4.005\} \\
& \underset{\sim}{Z}=\frac{W-4}{\mathbf{0 . 0 0 2 6}} \\
& 1-P\left\{\frac{3.995-4}{\mathbf{0 . 0 0 2 6}} \leq \underset{\sim}{Z} \leq \frac{4.005-4}{0.0026}\right\}=
\end{aligned}
$$

HIGH - SPEED PROBABILITY EVALUATION

MEAN VALUE EVALUATION

\square We next evaluate the mean cost per disk

$E\{$ cost $/$ disk \mid low speed $\}=(0.9914)(20.75)+(0.0086)(31.15)$
$=20.84$
$E\{$ cost $/$ disk \mid high speed $\}=(0.9452)(20.45)+(0.0548)(30.85)$
$=21.02$
We summarize the information in the decision tree

EXAMPLE: QUALITY CONTROL

CASE STUDY: OVERBOOKING

I M Airlines has a commuter plane capable of flying
16 passengers
\square The plane is used on a route for which M Airlines charges \$ 225

The airliner's cost structure is based on

the fixed costs for each flight	$\$ 900$
the variable costs/passenger	$\$ 100$
the "no-show" rate	4%

© 2006-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CASE STUDY - OVERBOOKING

\square The refund policy is that unused tickets are refunded only if a reservation is cancelled $24 h$ before the scheduled departure

The overbooking policy pays \$100 as an incentive to each bumped passenger and refunds the ticket
\square The decision required is to determine how many reservations should the airliner sell on this plane

SAMPLE CALCULATION FOR SELLING 18 RESERVATIONS

total revenues : $\underset{\sim}{R}=\mathbf{2 2 5} \cdot \mathbf{1 8}=\mathbf{4 , 0 5 0}$
passenger fixed and variable costs:

$$
C_{1}=900+100 \cdot \min \{\text { number of "shows", 16\}} \$
$$

bumping costs:

total costs: $\underset{\sim}{C}=C_{1}+C_{2}$
© 2006 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CASE STUDY: OVERBOOKING

\square We evaluate

$P\{$ no. of "shows" >16 \mid reservations sold=18 $\}$

$$
\underset{\sim}{P_{i}}=\left\{\begin{array}{l}
1 \text { passenger } i \text { is } a \text { "show" with prob. } 0.96 \\
0 \text { passenger } i \text { is a "no show" with prob. } 0.04
\end{array}\right.
$$

CASE STUDY: OVERBOOKING

\square If reservations sold $=18$, then we need to

evaluate

$$
\boldsymbol{P}\left\{\sum_{i=1}^{18} \underset{\sim}{\underset{\sim}{P}}>16 \mid 18 \text { reservations }\right\}
$$

\square We first evaluate

binomial r.v. with $\boldsymbol{p}=0.96$

CASE STUDY: OVERBOOKING

$$
=(.96)^{11}(.04)^{\circ}
$$

Then,

$$
\begin{aligned}
& P\left\{\sum_{i=1}^{18} P_{i}>16 \mid 18 \text { res }\right\}=P\left\{\sum_{i=1}^{18} P_{i} \geq 17 \mid 18 \text { res }\right\}= \\
& P \underbrace{\left\{\sum_{i=1}^{18} P_{i}=17 \mid 18 \text { res }\right\}}_{18(.4996)(.04)}+P \underbrace{\left\{\sum_{i=1}^{18} P_{i}=18 \mid 18 \text { res }\right\}}_{(.4996)(.96)}=0.8359
\end{aligned}
$$

CASE STUDY: OVERBOOKING

If reservations sold $=19$, then we can compute
and show that

$$
\boldsymbol{P}\left\{\sum_{i=1}^{19} \underset{\sim}{\underset{\sim}{\boldsymbol{P}}}>16 \mid 19 \text { res }\right\}=.9616
$$

We next consider the profit r.v. $\underset{\sim}{ }$, where,

$$
\underset{\sim}{\pi}=\underset{\sim}{R}-\underset{\sim}{C}=\underset{\sim}{R}-\left(C_{1}+C_{2}\right)
$$

and evaluate $E\{\underset{\sim}{\pi}\}$ for different values of reservations sold

CASE STUDY: OVERBOOKING

For reservations = 16

$$
\begin{aligned}
& E\{\underset{\sim}{\boldsymbol{R}}\}=(16)(225)=3,600 \\
& E\left\{C_{1}\right\}=900+100 \sum_{n=0}^{16} n \boldsymbol{P}\left\{\sum_{i=1}^{16}{\underset{\sim}{i}}^{\left.\boldsymbol{P}_{i}=n\right\}}\right. \\
& =900+100 E \underbrace{\left.\sum_{n=1}^{16}{\underset{\sim}{\sim}}_{\sim}^{P}\right\}}_{(16)(.96)=15.36} \quad \text { distribution } \\
& =
\end{aligned}
$$

CASE STUDY: OVERBOOKING

$$
=2,436
$$

also,

$$
E\left\{C_{2}\right\}=(225+100) \max \left\{0, \sum_{i=1}^{16} \underset{\sim}{\underset{P}{P}}-16\right\}=0
$$

and so

$$
\begin{aligned}
& \boldsymbol{E}\{\underset{\sim}{\boldsymbol{\pi} \mid 16 \text { res }\}}\}=\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}}\}-\boldsymbol{E}\{\underset{\sim}{\boldsymbol{C}}\} \\
& =\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}}\}-\boldsymbol{E}\left\{\boldsymbol{C}_{1}+\boldsymbol{C}_{2}\right\} \\
& =\mathbf{3 , 6 0 0}-\mathbf{2 , 4 3 6} \\
& =\mathbf{1 , 1 6 4}
\end{aligned}
$$

CASE STUDY: OVERBOOKING

[For reservations = 17

$$
E\{\underset{\sim}{\boldsymbol{R}}\}=(\mathbf{1 7})(\mathbf{2 2 5})=\mathbf{3 , 8 2 5}
$$

$$
E\left\{C_{1}\right\}=900+100 \sum_{n=0}^{16} n P\left\{\sum_{i=1}^{17}{\underset{\sim}{P}}_{i}=n\right\}+100.16 \cdot P\left\{\sum_{i=1}^{17}{\underset{\sim}{\sim}}_{i}=17\right\}
$$

$$
=900+782.70+799.34
$$

$$
=2,482.04
$$

CASE STUDY: OVERBOOKING

also,

$$
\begin{aligned}
& E\left\{C_{2}\right\}=325 P\left\{\sum_{i=1}^{17} P_{i}=17\right\} \\
& =325(0.4996) \\
& =162.37
\end{aligned}
$$

and so

$$
\begin{aligned}
& E\{\underset{\sim}{\pi} \mid 17 \text { res }\}=3,825-2,482.04-162.37 \\
& =1,180.59>1,164
\end{aligned}
$$

CASE STUDY: OVERBOOKING

\square For reservations = 18

$$
\begin{aligned}
& E\{\underset{\sim}{\boldsymbol{R}}\}=(\mathbf{1 8})(\mathbf{2 2 5})=4,050 \\
& \boldsymbol{E}\left\{\boldsymbol{C}_{1}\right\}=\mathbf{9 0 0}+\mathbf{1 0 0} \sum_{n=0}^{16} n \boldsymbol{P}\left\{\sum_{i=1}^{18} \boldsymbol{P}_{\sim i}=\boldsymbol{n}\right\}+\mathbf{1 , 6 0 0} \cdot \boldsymbol{P}\left\{\sum_{i=1}^{18} P_{i}>\mathbf{1 6}\right\} \\
& =\mathbf{9 0 0}+\mathbf{2 5 3 . 2 2}+\mathbf{1 , 3 4 2 . 8 9}
\end{aligned}
$$

$$
=2,496.11
$$

CASE STUDY: OVERBOOKING

$$
E\left\{C_{2}\right\}=325 \underbrace{\left\{\left\{_{i=1}^{18} P_{i}=17\right\}\right.}_{.3597}+650 P \underbrace{\left\{\sum_{i=1}^{18} P_{i}=18\right\}}_{.4796}=428.65
$$

and

$$
\begin{aligned}
& E\{\underset{\sim}{\pi} \mid 18 \text { res }\}=4,050-2,496.11-428.65 \\
& =1,125.24 \\
& <1,180.59
\end{aligned}
$$

CASE STUDY: OVERBOOKING

\square We can show that for reservations = 19

$$
E\{\underset{\sim}{\pi} \mid 19 \text { res }\}<1180.59
$$

\square We conclude that the profits are maximized for
reservations = 17 and so any overbooking over
that number results in lower profits

